Lots of sports break down into three critical phases. Football has offense, defense, and special teams. Baseball has hitting, fielding, and pitching. In racing, it is essentially the engine, chassis, and driver. Maximize the performance of all three areas and wins will almost certainly follow.

Most teams spend the majority of their time working on the chassis and have a pretty good handle on it. If not, scrape together every past issue of Circle Track you can get your hands on and study every article written by our own Bob Bolles. That will get you well on your way. The driver is a complete enigma. Nobody understands him, including his wife. So the best strategy there is to pray you get lucky. (Just kidding, that's an article for another day.) But it's the last third-the engine-that often leaves teams scratching their heads at the worst possible time.

The most common example is a team member picks up a new engine from the engine builder. The builder informs him that "it ran great on the dyno and should do you right." The engine builder even provides a dyno sheet to prove it. But when you get it in the car and take it to the track it behaves more like an ill-mannered child than a world-class sprinter. It makes no sense, and you end up wondering if your engine builder tricked you into buying a lemon.

If this describes a situation you have ever been in, don't worry, you aren't alone. There isn't an engine builder in the business who hasn't been cussed over a problem that he had nothing to do with. The problem to a balky engine often has a simple solution that's just been overlooked and has nothing to do with the engine itself. Inside your race car it is part of a very complex mechanical system where everything is dependent on something else. After all, it's not the heart's fault for being unable to pump oxygen-rich blood if your lungs are filled with pneumonia after you sat in the stands for an entire football game in January with your shirt off.

So in the interest of making your life a little easier, we've collected eight tips for things to check when your engine isn't running right-or to make sure you keep from blowing that expensive engine to smithereens. These were collected from engine builders who have seen them time and again from racers. Hopefully, these have never ruined a night of racing for you, and now they will never have to.

Cooling Issues
When the needle on the water temp gauge pegs the hot side and stays there, the answer is often fixed by pulling tape off the grille or some other way of improving flow through the radiator. But what do you do when the needle on the temp bounces back and forth and you can't tell what the temperature really is?

According to engine builder Keith Dorton of Automotive Specialists, that's a sign that you probably have air pockets in the cooling system. When the temp sensor for the gauge is surrounded by water, the gauge will read a relatively accurate temperature; but then when a pocket of air passes by the gauge's sensor, it will read lower.

The danger with this is when a bubble of air gets caught in the water jacket of the engine it can cause serious problems in the form of localized overheating. Localized overheating can result in one cylinder warping and ruining the piston rings. It can also lead to detonation in one cylinder, a sticking valve, and many other problems.

The best way to avoid this is to make sure you have no air at all in the cooling system. To do this you must have the radiator mounted so that the cap is higher than the engine's intake manifold. If this isn't possible, you can add a surge or expansion tank to the system so that the cap on it is higher than the engine. Fill the cooling system and then, with the cap off, crank the engine so that the water pump starts circulating coolant. As coolant moves through the engine and any pockets of air get pushed out, the coolant level will drop. Keep filling the radiator or expansion tank until the coolant level stays steady.