At Circle Track, we're all about helping you do more for yourself. But sometimes that's just not realistic. That's not casting doubts on the intelligence of our readership. Just like your mom, we believe you can learn to do anything yourself. It's just that many things necessary to go racing require expensive equipment that's simply out of the budget of most hobby-level racers.

This is especially true when it comes to the expensive machining equipment required to cut, plane, and hone the cylinder heads and engine block to spec, making it ready for assembly. The machinery required to perform those tasks properly is prohibitively expensive, requires a serious commitment in terms of shop space and supporting equipment, and takes a lot of time to learn to operate properly. So, we'll leave that to the professionals and enjoy going racing instead.

But that doesn't mean there aren't things you can do to make sure your machine work is being done properly. Better than that, we're going to show you how to make sure your cylinder head machinist isn't just doing an adequate job, but superior work. After all, this is racing, where everyone is striving to be the best of the best, not rebuilding the motor in a work van.

Many things necessary to go racing require expensive equipment that's simply out of the budget of most hobby-level racers

The area we're tackling today is the machine work done on the cylinder heads to give the valves a proper home. Both the intake and exhaust valves have an incredibly tough job, operating at seven- to eight-thousand rpms (or more) for extended periods with cams that are more aggressive than ever before—and getting more aggressive every year. Now add the fact that the valves most racers are using use the maximum diameter with the minimum stem size the rules will allow (usually 11/32-inch for typical Saturday night racing rules) to get the most amount of flow through the engine with minimum weight, and you can see why a ruined engine thanks to a dropped valve is an all-too-common sight in circle track racing.

If you're a regular reader of Circle Track you will probably recognize the name "KT Engine Development." We've worked with KT Engines for years because its engines win races and the company is confident enough in its abilities that it doesn't bother blowing smoke.

While working on other stories at KT Engines, we've noticed cylinder head specialist Kevin Troutman goes about the process of prepping cylinder heads a little bit differently than most other shops. We've pestered him for a while to share his process, and it may cost us a lunch or two, but we finally broke him down. It's all about making sure each valve is at the same depth on each head and uses minimal spring seat shims. That sounds simple enough, but the difference here is Troutman is much more concerned with the valve location at the bottom of the heads (the combustion chambers) than the top, where it's much easier—and more common—to measure.

This story is all about showing you why. Now you can check with your engine builder/machinist to make sure he is taking the same steps to ensure maximum precision. If your machinist isn't already doing this you can encourage him to begin, or better yet, find someone who is because then you know you're dealing with an outfit that refuses to take shortcuts.

[1] Immediately after cutting the seats KT Engine’s cylinder head specialist Kevin Troutman measures the valve heights from the combustion chamber side of the head. That’s because the most important part of the valve, he says, is the face and not the stem. For example, engine builders almost always check their piston-to-valve clearance at the No. 1 cylinder. But if that valve is high compared to one of the other 15, then one of the valves you didn’t check can be dangerously close to the valve, which can lead to engine damage if the motor goes into valve float. The only thing required to check your valve heights on this side of the head is a dial indicator in a deck bridge

[2] If the cylinder head hasn’t been freshly decked, make sure to zero out your bridge gauge on a surface you know is completely flat. Even if the engine has never overheated, if the cylinder head has been on a running engine the heat can start the warping process.

[3] Place the deck gauge so that both feet are on the deck of the block and the dial indicator is over the edge of the valve that’s on the tall side. On both a Chevy or Ford this will be the edge of the valve closest to the intake port. Make sure you use only one intake valve and one exhaust to eliminate any variables. Move that valve from chamber to chamber as you make your measurements. If you are checking behind your engine builder and the head is already assembled, it’s OK to measure the valves that are already installed.

[4] Troutman marks the reading he gets next to each valve seat. The actual height isn’t important, it’s the variation from valve to valve that matters here. Ideally, all the intakes would be within a thousandth of an inch or less, and the same would go for the exhausts. If one valve is sunk lower than the rest, Troutman says there really isn’t much that can be done short of installing a new seat insert. But if a valve is too tall (sticks into the combustion chamber) more than the rest the seat can often be cut a little deeper to even things out. This is important because a valve that’s too high will serve to make the combustion chamber smaller, and if you are pushing the limits of minimum chamber size it can make your engine illegal.

[5] Now that Troutman knows how the valves stack up on the combustion chamber side, he flips the head and measures the valve stem height.

[6] Before measuring the valve stem height, the spring seats must be in place, but you don’t want any shims underneath.