The Ackermann Toe Chart shows how much toe gain relates to differences in the left and right wheel measurements for different size tires. We can average the left and right tire sizes and look at that number when finding our Ackermann on the chart. Remember that if the left wheel moves farther than the right wheel, then we have Ackermann, or toe gain. If the right wheel moves more than the left wheel then you have Reverse Ackermann or loss of toe.

Solving the Excess Ackermann Problem
If your car gains or loses toe, there are a couple of ways to correct the situation. You can adjust the length of one or both of your steering arms to compensate for Ackermann effect. This works best for a car where the steering wheel is always turned to the left as opposed to a dirt car that sometimes has the wheels turned to the right too.

Lengthening the left steering arm, and/or shortening the right steering arm will reduce the Ackermann effect. We can also change the position of our drag link to move the inner ends of the tire rods forward to reduce Ackermann or rearward to increase it.

For a rack-and-pinion steering system, moving the rack forward in relation to the outer tie-rod ends will reduce Ackermann. Most Dirt Late Model cars use the rack systems, so we don't have the convenience of only having to improve our Ackermann effect in one direction, it must be correct for left or right turning of the wheels.

Asphalt Late Model cars are also designed with rack systems. Instead of changing the length of the steering arms, it might be best to move the rack and keep equal length steering arms when working to reduce excess Ackermann.

Make sure you know how much each of your tires are steering and reduce the Ackermann effect if needed. Then, when you balance your setup, both front tires will be working in perfect alignment to steer your car. A good steering race car is one that will have more turning power and is therefore more capable of running up front and winning races.